A Lecture Series on DATA COMPRESSION

Abdou Youssef (Speaker)

Anastase Nakassis (MDVTG Manager)

INTRODUCTION

- What is Compression?
 - It is a process of deriving more efficient (i.e., smaller) representations of data
- Goal of Compression
 - Significant reduction in the data size to reduce the storage/bandwidth requirements
- Constraints on Compression
 - Perfect or near-perfect reconstruction (lossless/lossy)
- Strategies for Compression
 - Reducing redundancies
 - Exploiting the characteristics of human vision

NEED/MOTIVATION FOR COMPRESSION

• Massive Amounts of Data Involved in Storage/Transmission of Text, Sound, Images, and Videos in Many Applications

• Applications

- Medical imaging
- Teleradiology
- Space/Satellite imaging
- Multimedia
- Video on demand

• Concrete Figures

- A typical hospital generates close to 1 terabits per year
- NASA's EOS will generate 1 terabytes per day
- One 2-hour video = 1.3 terabits
- Video transmission speed = 180 Mb/sec
- With MPEG1 (1.5Mb/s), need compression ratio of 120
- With MPEG2 (4-10Mb/s), need comp. ratio of 18-45

BASIC DEFINITIONS

- Lossless Compression: 100% accurate reconstruction of the original data
- Lossy Compression: The reconstruction involves errors which may or may not be tolerable
- Bit Rate: Average number of bits per original data element after compression
- ullet Compression Ratio: $\frac{Original\ Data\ Size}{Compressed\ Data\ Size}$
- Coding: Compression
- Codeword: A binary string representing either the whole coded data or one coded data symbol

STRATEGIES FOR COMPRESSION (Redundancy Reduction)

- Symbol-Level Representation Redundancy
 - Different symbols occur with different frequencies
 - Variable-length codes vs. fixed-length codes
 - Frequent symbols are better coded with short codes
 - Infrequent symbols are coded with long codes
 - Example Techniques: Huffman Coding
- Block-Level Representation Redundancy
 - Different blocks of data occur with varying frequencies
 - Better then to code blocks than individual symbols
 - The block size can be fixed or variable
 - The block-code size can be fixed or variable
 - Frequent blocks are better coded with short codes
 - Example techniques: Block-oriented Huffman, Run-Length Encoding (RLE), Arithmetic Coding, Lempil-Ziv (LZ)

REDUNDANCY REDUCTION (Cont.)

- Inter-Pixel Spatial Redundancy
 - Neighboring pixels tend to have similar values
 - Neighboring pixels tend to exhibit high correlations
 - Techniques: Decorrelation and/or processing in the frequency domain
 - Spatial decorrelation converts correlations into symbol- or block-redundancy
 - Frequency domain processing addresses visual redundancy (see the next slide)
- Inter-Pixel Temporal Redundancy (in Video)
 - Often, the majority of corresponding pixels in successive video-frames are identical over long spans of frames
 - Due to motion, blocks of pixels change in position but not in values between successive frames
 - Thus, block-oriented motion-compensated redundancy reduction techniques are used for video compression

REDUNDANCY REDUCTION (Cont.)

• Visual Redundancy

- The human visual system (HVS) has certain limitations that make many image contents <u>invisible</u>. Those contents, termed visually redundant, are the target of removal in lossy compression.
- In fact, the HVS can see within a small range of spatial frequencies: 1–60 cycles/arc-degree

- Approach for reducing visual redundancy in lossy compression
 - 1. Transform: Convert the data to the frequency domain
 - 2. Quantize: Under-represent the high frequencies
 - 3. Losslessly compress the quantized data

INFORMATION THEORY PRELIMINARIES

- Discrete Memoryless Source S: A data generator where the alphabet $\{a_k\}$ is finite and the symbols generated are independent of one another.
- Entropy: $H(S) = -\sum_k p_k \log p_k$, where $p_k = Prob[a_k]$
- H(S) is the minimum average number of bits/symbol possible
- Sources with Memory: Presence of inter-symbol correlation
- Their entropy is still the min average number of bit/symbol
- \bullet Adjoint Source of Order N
 - Treat each possible block A of N symbols as a macrosymbol, and compute the probability P_A
 - Treat the source as a memoryless source consisting of the macrosymbols A's and their probabilities P_A 's
 - The entropy $H_N = -\sum_A P_A \log P_A$
- Theorem (Shannon): For any source S with memory, $\frac{H_N(S)}{N} \longrightarrow H(S)$ as $N \longrightarrow \infty$

HUFFMAN CODING

- Each (macro)symbol A has a probability P_A
- Form a Huffman tree as follows:
 - 1. Create a node for each symbol
 - 2. While (there are two or more uncombined nodes) do
 - select 2 uncombined nodes a & b of minimum probabilities
 - Combine a & b by creating a new node c of prob P_a+P_b , and making a & b children of c
 - 3. Label the tree edges: left edges with 0, right edges with 1
 - 4. The code of each symbol is the binary sequence labeling the path from the root down to the corresponding leaf

HUFFMAN CODING (Cont.)

• Example: Alphabet= $\{A, B, C, D, E, F, G, H\}$ of probabilities 1/2, 1/4, 1/16, 1/16, 1/32, 1/32, 1/32, 1/32

HUFFMAN CODING (Cont.)

- Coding a Sequence/File
 - Represent each symbol in the sequence by its Huffman code
 - Example: ABBAACA is coded as 101011100101

• Decoding

- Proceed from the next undecoded bit, and walk down the tree (starting from the root) going left or right depending on whether the bit is 0 or 1
- When a leaf is reached, replace the binary string just scanned by the symbol corresponding to the leaf
- Example:

RUN-LENGTH ENCODING

- Represent each subsequence of identical symbols by a pair (L, a) where L is the length of the subsequence, and a is the recurring symbol in the subsequence
- Example: aaabbbbaaaa is coded as (3, a) (4, b) (4, a)
- If the sequence is binary, there is no need to represent a because the value of a alternates between 0 and 1
- \bullet Example: 00011111000011 is coded as 3, 5, 4, 2
- RLE can be followed by Hoffman coding to further code the L's and a's
- The fax standard uses RLE

ARITHMETIC CODING

- Arithmetic Coding achieves a bit rate equal to the entropy
- It codes the whole input sequence, rather than individual symbols, into one codeword
- The Conceptual Main Idea
 - For each binary input sequence of n bits, divide the unit interval into 2^n intervals, where the length of i-th interval I_i is the probability of the i-th n-bit binary sequence
 - Code the *i*-th binary sequence by $l_1l_2...l_t$ where $0.l_1l_2...l_t...$ is the binary representation of the left end of interval I_i , and $t = \lceil -\log(\text{Prob}(i\text{-th sequence})) \rceil$

ARITHMETIC CODING

- Method
 - 1. Let $a_1a_2...a_n$ be the input to be coded
 - 2. Let I = [L, R) be the interval corresponding to the subsequence scanned so far
 - 3. Initially, I = [0, 1);
 - 4. for i = 1 to n do
 - Let $P_i = Prob[0/a_1a_2...a_{i-1}]$, and $\Delta = R L$
 - Divide I into 2 intervals: $[L, L+P_i\Delta)$ and $[L+P_i\Delta, R)$
 - If $a_i = 0$, reduce I to $[L, L + P_i \Delta)$
 - Else, reduce I to $[L = L + P_i \Delta, R)$
 - 5. $t = \left[-\log(R L) \right]$
 - 6. Express L in binary $L = 0.l_1l_2...$
 - 7. Code the input with $l_1l_2...l_t$
- Patent: IBM Q-Coder

ARITHMETIC CODING (Cont.)

• Example: Binary Markov Source P[0/0] = P[1/1] = 3/4, P[0/1] = P[1/0] = 1/4 and P[0] = P[1] = 1/2

LEMPIL-ZIV COMPRESSION

• LZ encodes recurring patterns (blocks) using the positions of their first occurrences

• LZ Encoder

- 1. Let $x_1x_2...x_n$ be the input to be coded
- 2. Maintain a dictionary (DICT) of patterns seen so far
- 3. DICT[1]= x_1 , and put x_1 in the output code
- 4. While (there are still input symbols) do
 - Read from the remaining input until the string scanned is no longer in DICT. Call that string Wa, where W is in DICT and a in the input symbol after W
 - Let j be the index where W=DICT[j]; (j < i)
 - Let \overline{j} be the $\lceil \log i \rceil$ -bit binary representation of j
 - Code Wa as (\overline{j}, a) and append that code to the output
 - $-\operatorname{DICT}[i] = Wa \text{ and } i = i+1$
- Remark: The dictionary is not stored/transmitted.
- The LZ bitrate is asymptotically optimal <u>without</u> the need to know or compute the underlying probability model of the input data.

LEMPEL-ZIV (Cont.)

• Example: x = 0010100100100100110101

LEMPEL-ZIV (Cont.)

• LZ Decoder

- 1. Let $y = y_1y_2...$ be the codeword to be decoded back to x
- 2. $x = y_1$ and DICT[1] = y_1
- 3. i = 2
- 4. While (the codeword is not fully scanned) do
 - -j = the next $\lceil \log i \rceil$ bits from y
 - -W = DICT[j]
 - -a = the next symbol from y
 - append Wa to the right of x
 - $-\operatorname{DICT}[i] = Wa$
 - -i = i + 1

LEMPEL-ZIV (Cont.)

• Example: Decoding y = 011100110100110110111 from the previous example

i	$\lceil \log i \rceil$	$\overline{j} = j$	W	a	DICT[i]	x = (previous(x))(Wa)
1	0	$\epsilon = \epsilon$	ϵ	0	0	0
2	1	$(1)_2 = 1$	0	1	01	001
3	2	$(10)_2 = 2$	01	0	010	001010
4	2	$(11)_2 = 3$	010	0	0100	0010100100
5	3	$(100)_2 = 4$	0100	1	01001	001010010001001
6	3	$(101)_2 = 5$	01001	1	010011	001010010001001010011
7	3	$(011)_2 = 3$	010	1	0101	0010100100010010100110101

- \bullet Below, the underbraced strings in y are the binary representations of the various values of j
- Right under each underbraced j value, the corresponding DICT[j] is put in x. The non-underbraced bits of y are "dropped" into the appropriate positions in x.

DPCM

- DPCM is a predictive technique that capitalizes on interpixel spatial redundancy
- DPCM predicts the next pixel based on the values of the previous neighboring pixels
- It then computes the residual pixel (actual predicted)
- Finally, it losslessly compresses the residual data, using RLE, Huffman, etc.
- DPCM decorrelates the data and causes the residual to have lower (memoryless) entropy
- DPCM is the lossless JPEG standard

PROS/CONS OF THE LOSSLESS TECHNIQUES

	Advantages	Disadvantages
Huffman	Easy to implementGood bitrate	• Ignores correlations
Blocked- Huffman	Exploits correlationsNear-optimal bitrate	• Block probabilities are costly to compute
Arithmetic Coding	• Optimal bitrate	 Precision problems as intervals become very small Needs the conditional probability model
RLE	Easy to implementGood bitrate	• Not generally applicable as a standalone
LZ	Optimal bitrateDoes not need the probability model of the data	• Requires long input sequences to pay off
DPCM	Easy to implementGood bitrate	• Limited to inter-pixel redundancy
Other predictive coders	• Good bitrate	• Slower than DPCM
coders Bit-Plane Coding	• Good bitrate	• Slower than DPCM

LIMITATIONS OF LOSSLESS COMPRESSION

- Low compression ratios (about 2 to 1)
- No lossless compression technique can compress every possible input by at least one bit